Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.715
1.
mBio ; 15(5): e0011924, 2024 May 08.
Article En | MEDLINE | ID: mdl-38587424

Gonorrhea, caused by the bacterium Neisseria gonorrhoeae (Gc), is characterized by neutrophilic influx to infection sites. Gc has developed mechanisms to resist killing by neutrophils that include modifications to its surface lipooligosaccharide (LOS). One such LOS modification is sialylation: Gc sialylates its terminal LOS sugars with cytidine-5'-monophosphate-N-acetylneuraminic acid, which is scavenged from the host using LOS sialyltransferase (Lst) since Gc cannot make its sialic acid. Sialylation enables sensitive strains of Gc to resist complement-mediated killing in a serum-dependent manner. However, little is known about the contribution of sialylation to complement-independent, direct Gc-neutrophil interactions. In the absence of complement, we found sialylated Gc expressing opacity-associated (Opa) proteins decreased the oxidative burst and granule exocytosis from primary human neutrophils. In addition, sialylated Opa+ Gc survived better than vehicle treated or Δlst Gc when challenged with neutrophils. However, Gc sialylation did not significantly affect Opa-dependent association with or internalization of Gc by neutrophils. Previous studies have implicated sialic acid-binding immunoglobulin-type lectins (Siglecs) in modulating neutrophil interactions with sialylated Gc. Blocking neutrophil Siglecs with antibodies that bind to their extracellular domains eliminated the ability of sialylated Opa+ Gc to suppress the oxidative burst and resist neutrophil killing. These findings highlight a new role for sialylation in Gc evasion of human innate immunity, with implications for the development of vaccines and therapeutics for gonorrhea. IMPORTANCE: Neisseria gonorrhoeae, the bacterium that causes gonorrhea, is an urgent global health concern due to increasing infection rates, widespread antibiotic resistance, and its ability to thwart protective immune responses. The mechanisms by which Gc subverts protective immune responses remain poorly characterized. One way N. gonorrhoeae evades human immunity is by adding sialic acid that is scavenged from the host onto its lipooligosaccharide, using the sialyltransferase Lst. Here, we found that sialylation enhances N. gonorrhoeae survival from neutrophil assault and inhibits neutrophil activation, independently of the complement system. Our results implicate bacterial binding of sialic acid-binding lectins (Siglecs) on the neutrophil surface, which dampens neutrophil antimicrobial responses. This work identifies a new role for sialylation in protecting N. gonorrhoeae from cellular innate immunity, which can be targeted to enhance the human immune response in gonorrhea.


Gonorrhea , N-Acetylneuraminic Acid , Neisseria gonorrhoeae , Neutrophil Activation , Neutrophils , Sialic Acid Binding Immunoglobulin-like Lectins , Neisseria gonorrhoeae/immunology , Neisseria gonorrhoeae/genetics , Neisseria gonorrhoeae/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/microbiology , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Gonorrhea/immunology , Gonorrhea/microbiology , Complement System Proteins/immunology , Complement System Proteins/metabolism , Lipopolysaccharides/metabolism , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/immunology , Bacterial Outer Membrane Proteins/genetics , Respiratory Burst , Host-Pathogen Interactions/immunology , Immune Evasion
2.
Gut Microbes ; 16(1): 2334967, 2024.
Article En | MEDLINE | ID: mdl-38630006

Human milk oligosaccharides (HMOs) are vital milk carbohydrates that help promote the microbiota-dependent growth and immunity of infants. Sialic acid (SA) is a crucial component of sialylated milk oligosaccharides (S-MOs); however, the effects of SA supplementation in lactating mothers on S-MO biosynthesis and their breastfed infants are unknown. Probiotic intervention during pregnancy or lactation demonstrates promise for modulating the milk glycobiome. Here, we evaluated whether SA and a probiotic (Pro) mixture could increase S-MO synthesis in lactating mothers and promote the microbiota development of their breastfed neonates. The results showed that SA+Pro intervention modulated the gut microbiota and 6'-SL contents in milk of maternal rats more than the SA intervention, which promoted Lactobacillus reuteri colonization in neonates and immune development. Deficient 6'-SL in the maternal rat milk of St6gal1 knockouts (St6gal1-/-) disturbed intestinal microbial structures in their offspring, thereby impeding immune tolerance development. SA+Pro intervention in lactating St6gal1± rats compromised the allergic responses of neonates by promoting 6'-SL synthesis and the neonatal gut microbiota. Our findings from human mammary epithelial cells (MCF-10A) indicated that the GPR41-PI3K-Akt-PPAR pathway helped regulate 6'-SL synthesis in mammary glands after SA+Pro intervention through the gut - breast axis. We further validated our findings using a human-cohort study, confirming that providing SA+Pro to lactating Chinese mothers increased S-MO contents in their breast milk and promoted gut Bifidobacterium spp. and Lactobacillus spp. colonization in infants, which may help enhance immune responses. Collectively, our findings may help alter the routine supplementation practices of lactating mothers to modulate milk HMOs and promote the development of early-life gut microbiota and immunity.


Gastrointestinal Microbiome , N-Acetylneuraminic Acid , Female , Infant , Pregnancy , Humans , Animals , Rats , Lactation , Cohort Studies , Phosphatidylinositol 3-Kinases , Milk, Human , Immunity
3.
Commun Biol ; 7(1): 430, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594506

Despite recent advances in cancer immunotherapy, pancreatic ductal adenocarcinoma (PDAC) remains unresponsive due to an immunosuppressive tumor microenvironment, which is characterized by the abundance of cancer-associated fibroblasts (CAFs). Once identified, CAF-mediated immune inhibitory mechanisms could be exploited for cancer immunotherapy. Siglec receptors are increasingly recognized as immune checkpoints, and their ligands, sialic acids, are known to be overexpressed by cancer cells. Here, we unveil a previously unrecognized role of sialic acid-containing glycans on PDAC CAFs as crucial modulators of myeloid cells. Using multiplex immunohistochemistry and transcriptomics, we show that PDAC stroma is enriched in sialic acid-containing glycans compared to tumor cells and normal fibroblasts, and characterized by ST3GAL4 expression. We demonstrate that sialic acids on CAF cell lines serve as ligands for Siglec-7, -9, -10 and -15, distinct from the ligands on tumor cells, and that these receptors are found on myeloid cells in the stroma of PDAC biopsies. Furthermore, we show that CAFs drive the differentiation of monocytes to immunosuppressive tumor-associated macrophages in vitro, and that CAF sialylation plays a dominant role in this process compared to tumor cell sialylation. Collectively, our findings unravel sialic acids as a mechanism of CAF-mediated immunomodulation, which may provide targets for immunotherapy in PDAC.


Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , N-Acetylneuraminic Acid/metabolism , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Macrophages/metabolism , Polysaccharides/metabolism , Tumor Microenvironment
4.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Article En | MEDLINE | ID: mdl-38583233

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Antineoplastic Agents , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Squamous Cell Carcinoma of Head and Neck , N-Acetylneuraminic Acid/metabolism , Maackia/chemistry , Maackia/metabolism , Mouth Neoplasms/pathology , Chromatography, Liquid , Ligands , Tandem Mass Spectrometry , Lectins/pharmacology , Antineoplastic Agents/pharmacology , Sequence Analysis , Cell Movement
6.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561669

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Extracellular Vesicles , Urinary Bladder Neoplasms , Animals , Mice , Extracellular Vesicles/metabolism , Glycoconjugates , Integrin beta1/metabolism , Mammals , N-Acetylneuraminic Acid/metabolism , Sialic Acids/metabolism
7.
Biochem Pharmacol ; 223: 116199, 2024 May.
Article En | MEDLINE | ID: mdl-38604256

GNEM (GNE Myopathy) is a rare neuromuscular disease caused due to biallelic mutations in sialic acid biosynthetic GNE enzyme (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine Kinase). Recently direct or indirect role of GNE in other cellular functions have been elucidated. Hyposialylation of IGF-1R leads to apoptosis due to mitochondrial dysfunction while hyposialylation of ß1 integrin receptor leads to altered F-actin assembly, disrupted cytoskeletal organization and slow cell migration. Other cellular defects in presence of GNE mutation include altered ER redox state and chaperone expression such as HSP70 or PrdxIV. Currently, there is no cure to treat GNEM. Possible therapeutic trials focus on supplementation with sialic acid, ManNAc, sialyllactose and gene therapy that slows the disease progression. In the present study, we analyzed the effect of small molecules like BGP-15 (HSP70 modulator), IGF-1 (IGF-1R ligand) and CGA (cofilin activator) on cellular phenotypes of GNE heterozygous knock out L6 rat skeletal muscle cell line (SKM­GNEHz). Treatment with BGP-15 improved GNE epimerase activity by 40 % and reduced ER stress by 45 % for SKM­GNEHz. Treatment with IGF-1 improved epimerase activity by 37.5 %, F-actin assembly by 100 %, cell migration upto 36 % (36 h) and atrophy by 0.44-fold for SKM­GNEHz. Treatment with CGA recovered epimerase activity by 49 %, F-actin assembly by 132 % and cell migration upto 41 % (24 h) in SKM­GNEHz. Our study shows that treatment with these small effector molecules reduces the detrimental phenotype observed in SKM­GNEHz, thereby, providing insights into potential therapeutic targets for GNEM.


Distal Myopathies , N-Acetylneuraminic Acid , Oximes , Piperidines , Animals , Rats , Actins/genetics , Distal Myopathies/drug therapy , Distal Myopathies/genetics , Insulin-Like Growth Factor I , Mutation , N-Acetylneuraminic Acid/genetics , N-Acetylneuraminic Acid/metabolism , Oximes/pharmacology , Piperidines/pharmacology , Racemases and Epimerases/genetics
8.
Carbohydr Res ; 539: 109123, 2024 May.
Article En | MEDLINE | ID: mdl-38669826

Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.


N-Acetylneuraminic Acid , Neoplasms , Humans , Neoplasms/metabolism , Neoplasms/pathology , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Animals
9.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38501663

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Alphacoronavirus , Coronavirus Infections , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Alphacoronavirus/chemistry , Alphacoronavirus/physiology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Heparitin Sulfate , N-Acetylneuraminic Acid/metabolism , Peptide Hydrolases , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Swine
10.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38470143

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Chickens , Ducks , Horses , Influenza A virus , Influenza in Birds , Neuraminic Acids , Animals , Humans , Chickens/genetics , Chickens/metabolism , Chickens/virology , Ducks/genetics , Ducks/metabolism , Ducks/virology , Epitopes/chemistry , Epitopes/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Horses/genetics , Horses/metabolism , Horses/virology , Influenza A virus/chemistry , Influenza A virus/classification , Influenza A virus/metabolism , Influenza in Birds/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Mutation , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Swine/virology , Viral Zoonoses/metabolism , Viral Zoonoses/transmission , Viral Zoonoses/virology
11.
J Am Chem Soc ; 146(12): 8780-8786, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38497732

The small RNAs on living cell membranes were recently found to be N-glycosylated and terminated with sialic acids, although the glycosylation sites and potential functions remain unclear. Herein, we designed a second-generation hierarchical coding strategy (HieCo 2) for in situ visualization of cell surface RNA-specific sialylation. After covalently binding DNA codes to sialic acids and then binding a DNA code to a target RNA via sequence specificity, cascade decoding processes were performed with subsequent signal amplification that enabled sensitive in situ visualization of low-abundance Y5 RNA-specific sialic acids on living cell membranes. The proposed strategy unveils the number of glycosylation sites on a single RNA and reveals the binding preference of glycosylated RNAs to different sialic acid binding-immunoglobulin lectin-type receptors, demonstrating a new route for exploration of the glycosylated RNA-related biological and pathological processes.


RNA , Sialic Acids , Glycosylation , RNA/metabolism , Cell Membrane/metabolism , Sialic Acids/metabolism , DNA/metabolism , N-Acetylneuraminic Acid/metabolism
12.
Molecules ; 29(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38542909

N-glycolylneuraminic acid (Neu5Gc), a sialic acid predominantly found in the non-neurohumoral fluids of hind-mouthed animals, is incapable of synthesizing Neu5Gc due to a deletion in the CMAH exon of the gene encoding human CMP-Neu5Gc hydroxylase. But consumption of animal-derived foods that contain Neu5Gc, such as red meat, can instigate an immune response in humans, as Neu5Gc is recognized as a foreign substance by the human immune system. This recognition leads to the production of anti-Neu5Gc antibodies, subsequently resulting in chronic inflammation. When Neu5Gc is consumed excessively or frequently, it may contribute to the development of heart disease and cancer. This makes Neu5Gc, an endogenous pathogenic factor derived from red meat, a new hot topic in red meat safety research. In this study, aptamers obtained by the magnetic bead SELEX technique were subjected to homology and secondary structure prediction analysis as well as affinity determination. The result indicated that the aptamer 2B.N2A9 exhibited a robust binding affinity, with an affinity constant (Ka) of 1.87 × 108 L/mol. This aptamer demonstrated optimal binding specificity within a pH range of 5.4 to 7.4. Molecular docking analysis further revealed that aptamer 2B.N2A9 formed stable binding interactions with the target Neu5Gc at specific sites, namely G-14, C-15, G-13, G-58, G-60, and C-59. An Enzyme-Linked Oligonucleotide Sorbent Assay (ELOSA) methodology was established to detect the endogenous pathogenic factor Neu5Gc present in red meat. This method demonstrated a limit of detection (LOD) of 0.71 ng/mL, along with an average recovery rate of 92.23%. The aptamer obtained in this study exhibited favorable binding properties to Neu5Gc. The assay was relatively convenient and demonstrated good sensitivity. Further investigation into the distribution of Neu5Gc in various red meats is of public health significance and scientific potential. A practical detection method should be provided to guide red meat diets and ensure the nutrition and safety of meat products.


N-Acetylneuraminic Acid , Red Meat , Animals , Humans , Molecular Docking Simulation , Inflammation , Oligonucleotides
13.
Microb Pathog ; 190: 106628, 2024 May.
Article En | MEDLINE | ID: mdl-38508422

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Neuraminidase , Rotavirus Infections , Rotavirus , Virus Replication , Animals , Neuraminidase/metabolism , Neuraminidase/genetics , Rotavirus/drug effects , Rotavirus/physiology , Swine , Virus Replication/drug effects , Cell Line , Epithelial Cells/virology , Epithelial Cells/microbiology , Virus Attachment/drug effects , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/pharmacology , Antiviral Agents/pharmacology , Haplorhini , Swine Diseases/virology , Swine Diseases/microbiology
14.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38554266

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Biosensing Techniques , Sialic Acids , Sialic Acids/chemistry , Neuraminidase/chemistry , Neuraminidase/metabolism , N-Acetylneuraminic Acid/chemistry , Bacteria
15.
Front Cell Infect Microbiol ; 14: 1367233, 2024.
Article En | MEDLINE | ID: mdl-38495652

Bacterial vaginosis (BV) is an infection of the genital tract characterized by disturbance of the normally Lactobacilli-dominated vaginal flora due to the overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis, an anaerobic pathogen and the major pathogen of BV, produces sialidases that cleave terminal sialic acid residues off of human glycans. By desialylation, sialidases not only alter the function of sialic acid-containing glycoconjugates but also play a vital role in the attachment, colonization and spread of many other vaginal pathogens. With known pathogenic effects, excellent performance of sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase inhibitors, sialidases could be used as a biomarker of BV. This review explores the sources of sialidases and their role in vaginal dysbiosis, in aims to better understand their participation in the pathogenesis of BV and their value in the diagnosis and treatment of BV.


Vaginosis, Bacterial , Female , Humans , Vaginosis, Bacterial/drug therapy , Vaginosis, Bacterial/microbiology , Neuraminidase/chemistry , N-Acetylneuraminic Acid , Gardnerella vaginalis , Vagina/microbiology
16.
Colloids Surf B Biointerfaces ; 236: 113809, 2024 Apr.
Article En | MEDLINE | ID: mdl-38447446

The aim of the study was to develop an oral targeting drug delivery system (OTDDS) of oxymatrine (OMT) to effectively treat ulcerative colitis (UC). The OTDDS of OMT (OMT/SA-NPs) was constructed with OMT, pectin, Ca2+, chitosan (CS) and sialic acid (SA). The obtained particles were characterized in terms of particle size, zeta potential, morphology, drug loading, encapsulation efficiency, drug release and stability. The average size of OMT/SA-NPs was 255.0 nm with a zeta potential of -12.4 mV. The loading content and encapsulation efficiency of OMT/SA-NPs were 14.65% and 84.83%, respectively. The particle size of OMT/SA-NPs changed slightly in the gastrointestinal tract. The nanoparticles can delivery most of the drug to the colon region. In vitro cell experiments showed that the SA-NPs had excellent biocompatibility and anti-inflammation, and the uptake of SA-NPs by RAW 264.7 cells was time and concentration-dependent. The conjugated SA can help the internalization of NPs into target cells. In vivo experiments showed that OMT/SA-NPs had a superior anti-inflammation effect and the effect of reducing UC, which was attributed to the delivery most of OMT to the colonic lumen, the specific targeting and retention in colitis site and the combined anti-inflammation of OMT and NPs.


Colitis, Ulcerative , Matrines , Nanoparticles , Humans , Colitis, Ulcerative/drug therapy , N-Acetylneuraminic Acid , Pectins , Drug Delivery Systems , Anti-Inflammatory Agents/pharmacology
17.
Microbiology (Reading) ; 170(3)2024 03.
Article En | MEDLINE | ID: mdl-38488830

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/analogs & derivatives , Organic Anion Transporters , Symporters , N-Acetylneuraminic Acid/chemistry , Symporters/genetics , Symporters/metabolism , Bacteria/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
18.
Langmuir ; 40(13): 7067-7077, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38518180

The importance of sialic acid on cell functions has been recently unveiled, and consequently, great attention has been paid to its interaction with tumor cells. In this line of research, we have realized phosphorene nanosheets functionalized with sialic acid molecules for biological applications with no need for another linker molecule. The formation of phosphorene sheets is feasible by using hydrogen plasma treatment and conversion of amorphous phosphorus on silicon substrates into highly crystalline nanosheets. Through immersion of these freshly prepared nanosheets into an aqueous solution containing sialic acid molecules, the formation of chemical binding between biomolecules and P atoms is initiated to form a carpet-like coverage. We have studied these structures by using Raman spectroscopy, electron microscopy, FTIR-ATR spectroscopy, and X-ray photoelectron spectroscopy. While XPS supports the passivation of sialic-activated phosphorene nanosheets (SAP) against oxidation in air or aqueous solutions, the FTIR analysis corroborates the evolution of P-O-C and P-C bonds between such biomolecules and the sheet surface. Moreover, the high-resolution TEM images demonstrate a considerable reduction in the lattice spacing from 0.32 nm for pristine phosphorene to 0.30 nm. Similarly, Raman spectroscopy depicts a shift in A2g in-plane vibrations, owing to the evolution of stress in the passivated sheets. To investigate their biocompatibility, we examined the toxicity of these bioactivated structures and observed no or little sign of toxicity. For the latter evaluation, we exploited MTT, flow cytometry, and animal models for in vivo investigations.


N-Acetylneuraminic Acid , Water , Animals , Oxidation-Reduction
19.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Article En | MEDLINE | ID: mdl-38439625

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Galactose , N-Acetylneuraminic Acid , N-Acetylneuraminic Acid/chemistry , Humans , Animals , Mice , Galactose/chemistry , Cell Line, Tumor , Dendrimers/chemistry , Dendrimers/pharmacology , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/pathology
20.
Crit Rev Oncol Hematol ; 197: 104330, 2024 May.
Article En | MEDLINE | ID: mdl-38556071

Sialic acid (SA), as the ultimate epitope of polysaccharides, can act as a cap at the end of polysaccharide chains to prevent their overextension. Sialylation is the enzymatic process of transferring SA residues onto polysaccharides and is catalyzed by a group of enzymes known as sialyltransferases (SiaTs). It is noteworthy that the sialylation level of glycoproteins is significantly altered when digestive cancer occurs. And this alteration exhibits a close correlation with the progression of these cancers. In this review, from the perspective of altered SiaTs expression levels and changed glycoprotein sialylation patterns, we summarize the pathogenesis of gastric cancer (GC), colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDAC), and hepatocellular carcinoma (HCC). Furthermore, we propose potential early diagnostic biomarkers and prognostic indicators for different digestive cancers. Finally, we summarize the therapeutic value of sialylation in digestive system cancers.


Biomarkers, Tumor , Glycoproteins , Sialyltransferases , Humans , Sialyltransferases/metabolism , Biomarkers, Tumor/metabolism , Glycoproteins/metabolism , N-Acetylneuraminic Acid/metabolism , Digestive System Neoplasms/metabolism , Digestive System Neoplasms/diagnosis , Molecular Targeted Therapy/methods , Animals
...